Cover Time in Edge-Uniform Stochastically-Evolving Graphs
نویسندگان
چکیده
منابع مشابه
Cover Time in Edge-Uniform Stochastically-Evolving Graphs
We define a new model of stochastically evolving graphs, namely the Edge-Uniform Stochastic Graphs. In this model, each possible edge of an underlying general static graph evolves independently being either alive or dead at each discrete time step of evolution following a (Markovian) stochastic rule. The stochastic rule is identical for each possible edge and may depend on the previous k ≥ 0 ob...
متن کاملEdge Cover Time for Regular Graphs
Consider the following stochastic process on a graph: initially all vertices are uncovered and at each step cover the two vertices of a random edge. What is the expected number of steps required to cover all vertices of the graph? In this note we show that the mean cover time for a regular graph of N vertices is asymptotically (N log N)/2. Moreover, we compute the exact mean cover time for some...
متن کاملON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS
Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...
متن کاملStochastically evolving networks.
We discuss a class of models for the evolution of networks in which new nodes are recruited into the network at random times, and links between existing nodes that are not yet directly connected may also form at random times. The class contains both models that produce "small-world" networks and less tightly linked models. We produce both trees, appropriate in certain biological applications, a...
متن کاملBiclique Edge Cover Graphs and Confluent Drawings
Confluent drawing is a technique that allows some non-planar graphs to be visualized in a planar way. This approach merges edges together, drawing groups of them as single tracks, similar to train tracks. In the general case, producing confluent drawings automatically has proven quite difficult. We introduce the biclique edge cover graph that represents a graph G as an interconnected set of cli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algorithms
سال: 2018
ISSN: 1999-4893
DOI: 10.3390/a11100149